Hyperphosphorylation of the cardiac ryanodine receptor at serine 2808 is not involved in cardiac dysfunction after myocardial infarction.

نویسندگان

  • Hongyu Zhang
  • Catherine A Makarewich
  • Hajime Kubo
  • Wei Wang
  • Jason M Duran
  • Ying Li
  • Remus M Berretta
  • Walter J Koch
  • Xiongwen Chen
  • Erhe Gao
  • Héctor H Valdivia
  • Steven R Houser
چکیده

RATIONALE Abnormal behavior of the cardiac ryanodine receptor (RyR2) has been linked to cardiac arrhythmias and heart failure (HF) after myocardial infarction (MI). It has been proposed that protein kinase A (PKA) hyperphosphorylation of the RyR2 at a single residue, Ser-2808, is a critical mediator of RyR dysfunction, depressed cardiac performance, and HF after MI. OBJECTIVE We used a mouse model (RyRS2808A) in which PKA hyperphosphorylation of the RyR2 at Ser-2808 is prevented to determine whether loss of PKA phosphorylation at this site averts post MI cardiac pump dysfunction. METHODS AND RESULTS MI was induced in wild-type (WT) and S2808A mice. Myocyte and cardiac function were compared in WT and S2808A animals before and after MI. The effects of the PKA activator Isoproterenol (Iso) on L-type Ca(2+) current (I(CaL)), contractions, and [Ca(2+)](I) transients were also measured. Both WT and S2808A mice had depressed pump function after MI, and there were no differences between groups. MI size was also identical in both groups. L type Ca(2+) current, contractions, Ca(2+) transients, and SR Ca(2+) load were also not significantly different in WT versus S2808A myocytes either before or after MI. Iso effects on Ca(2+) current, contraction, Ca(2+) transients, and SR Ca(2+) load were identical in WT and S2808A myocytes before and after MI at both low and high concentrations. CONCLUSIONS These results strongly support the idea that PKA phosphorylation of RyR-S2808 is irrelevant to the development of cardiac dysfunction after MI, at least in the mice used in this study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice.

Increased sarcoplasmic reticulum (SR) Ca2+ leak via the cardiac ryanodine receptor/calcium release channel (RyR2) is thought to play a role in heart failure (HF) progression. Inhibition of this leak is an emerging therapeutic strategy. To explore the role of chronic PKA phosphorylation of RyR2 in HF pathogenesis and treatment, we generated a knockin mouse with aspartic acid replacing serine 280...

متن کامل

Integrative Physiology Hyperphosphorylation of the Cardiac Ryanodine Receptor at Serine 2808 Is Not Involved in Cardiac Dysfunction After Myocardial Infarction

compared in WT and S2808A animals before and after MI. The effects of the PKA activator Isoproterenol (Iso) on L-type Ca current (ICaL), contractions, and [Ca 2 ]I transients were also measured. Both WT and S2808A mice had depressed pump function after MI, and there were no differences between groups. MI size was also identical in both groups. L type Ca current, contractions, Ca transients, and...

متن کامل

Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression.

Defective regulation of the cardiac ryanodine receptor (RyR2)/calcium release channel, required for excitation-contraction coupling in the heart, has been linked to cardiac arrhythmias and heart failure. For example, diastolic calcium "leak" via RyR2 channels in the sarcoplasmic reticulum has been identified as an important factor contributing to impaired contractility in heart failure and vent...

متن کامل

Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure.

Hyperphosphorylation of the cardiac Ca2+ release channel (ryanodine receptor, RyR2) by protein kinase A (PKA) at serine-2808 has been proposed to be a key mechanism responsible for cardiac dysfunction in heart failure (HF). However, the sites of PKA phosphorylation in RyR2 and their phosphorylation status in HF are not well defined. Here we used various approaches to investigate the phosphoryla...

متن کامل

Protein kinase A phosphorylation at serine-2808 of the cardiac Ca2+-release channel (ryanodine receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6).

Dissociation of FKBP12.6 from the cardiac Ca2+-release channel (RyR2) as a consequence of protein kinase A (PKA) hyperphosphorylation of RyR2 at a single amino acid residue, serine-2808, has been proposed as an important mechanism underlying cardiac dysfunction in heart failure. However, the issue of whether PKA phosphorylation of RyR2 can dissociate FKBP12.6 from RyR2 is controversial. To addi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 110 6  شماره 

صفحات  -

تاریخ انتشار 2012